
SQL Cheat Sheet

SQL Features

SQL allows us to interact with the databases and bring out/manipulate data within
them. Using SQL, we can create our own databases and then add data into these
databases in the form of tables.

The following functionalities can be performed on a database using SQL:

Create or Delete a Database.
Create or Alter or Delete some tables in a Database.
SELECT data from tables.
INSERT data into tables.
UPDATE data in tables.
DELETE data from tables.
Create Views in the database.
Execute various aggregate functions.

Learn SQL: Basic to Advanced Concepts
1. Installation

Page 3 © Copyright by Interviewbit

SQL Cheat Sheet

To get started with using SQL, we first need to install some Database Management
System server. A�er installing the RDBMS, the RDBMS itself will provide all the
required tools to perform operations on the database and its contents through SQL.
Some common RDBMS which is highly in use are:

Oracle
MySQL
PostgreSQL
Heidi SQL

To install any RDBMS, we just need to visit their official website and install the setup
file from there, by following the instructions available there. With the server setup,
we can set up a Query Editor, on which we can type our SQL Queries.

2. Tables

All data in the database are organized efficiently in the form of tables. A database can
be formed from a collection of multiple tables, where each table would be used for
storing a particular kind of data and the table by themselves would be linked with
each other by using some relations.

Example:

ID Name Phone Class

INTEGER VARCHAR(25) VARCHAR(12) INTEGER

The above example is for a table of students and stores their Name, Phone, and Class
as data. The ID is assigned to each student to uniquely identify each student and
using this ID, we can relate data from this table to other tables.

SQL-Create Table:

Page 4 © Copyright by Interviewbit

SQL Cheat Sheet

We use the CREATE command to create a table. The table in the above example can
be created with the following code:

CREATE TABLE student(
 ID INT NOT NULL,
 Name varchar(25),
 Phone varchar(12),
 Class INT
);

SQL-Delete Table:

To delete a table from a database, we use the DROP command.

DROP TABLE student;

3. SQL DataTypes

To allow the users to work with tables effectively, SQL provides us with various
datatypes each of which can be useful based on the type of data we handle.

Page 5 © Copyright by Interviewbit

SQL Cheat Sheet

The above image is a chart that shows all the datatypes available in SQL along with
some of their examples.

The next section describes various most popular SQL server datatypes categorised
under each major division.

String Datatypes:

The table below lists all the String type datatypes available in SQL, along with their
descriptions:

Page 6 © Copyright by Interviewbit

SQL Cheat Sheet

Datatype Description

CHAR(size) A fixed-length string containing
numbers, letters or special
characters. Length may vary from 0-
255.

VARCHAR(size) Variable-length string where the
length may vary from 0-65535. Similar
to CHAR.

TEXT(size) Can contain a string of size up to
65536 bytes.

TINY TEXT Can contain a string of up to 255
characters.

MEDIUM TEXT Can contain a string of up to
16777215 characters.

LONG TEXT Can contain a string of up to
4294967295 characters.

BINARY(size) Similar to CHAR() but stores binary
byte strings.

VARBINARY(size) Similar to VARCHAR() but stores
binary byte strings.

BLOB(size) Holds blobs up to 65536 bytes.

TINYBLOB It is used for Binary Large Objects and
has a maximum size of 255bytes.

MEDIUMBLOB Holds blobs up to 16777215 bytes.

LONGBLOB Holds blobs upto 4294967295 bytes.

Page 7 © Copyright by Interviewbit

SQL Cheat Sheet

Numeric Datatypes:

The table below lists all the Numeric Datatypes in SQL along with their descriptions:

Page 8 © Copyright by Interviewbit

SQL Cheat Sheet

Datatype Description

BIT(size) Bit-value type, where size varies from 1
to 64. Default value: 1

INT(size) Integer with values in the signed range
of -2147483648 to 2147483647 and
values in the unsigned range of 0 to
4294967295.

TINYINT(size) Integer with values in the signed range
of -128 to 127 and values in the unsigned
range of 0 to 255.

SMALLINT(size) Integer with values in the signed range
of -32768 to 32767 and values in the
unsigned range of 0 to 65535.

MEDIUMINT(size) Integer with values in the signed range
of -8388608 to 8388607 and values in the
unsigned range of 0 to 16777215.

BIGINT(size) Integer with values in the signed range
of 9223372036854775808 to
9223372036854775807 and values in the
unsigned range of 0 to
18446744073709551615.

BOOLEAN Boolean values where 0 is considered as
FALSE and non-zero values are
considered TRUE.

FLOAT (p) The floating-point number is stored. If
the precision parameter is set between 0
to 24, the type is FLOAT() else if it lies
between 25 to 53, the datatype is
DOUBLE()

Page 9 © Copyright by Interviewbit

SQL Cheat Sheet

Date/Time Datatypes:

The datatypes available in SQL to handle Date/Time operations effectively are called
the Date/Time datatypes. The below table lists all the Date/Time variables in SQL
along with their description:

Datatype Description

DATE Stores date in YYYY-MM-DD format with
dates in the range of ‘1000-01-01’ to
‘9999-12-31’.

TIME(fsp) Stores time in hh:mm:ss format with
times in the range of ‘-838:59:59’ to
‘838:59:59’.

DATETIME(fsp) Stores a combination of date and time in
YYYY-MM-DD and hh:mm:ss format, with
values in the range of ‘1000-01-01
00:00:00’ to ‘9999-12-31 23:59:59’.

TIMESTAMP(fsp) It stores values relative to the Unix
Epoch, basically a Unix Timestamp.
Values lie in the range of ‘1970-01-01
00:00:01’ UTC to ‘2038-01-09 03:14:07’
UTC.

YEAR Stores values of years as a 4digit number
format, with a range lying between -1901
to 2155.

Page 10 © Copyright by Interviewbit

SQL Cheat Sheet

4. SQL Commands

SQL Commands are instructions that are used by the user to communicate with the
database, to perform specific tasks, functions and queries of data.

Types of SQL Commands:

The above image broadly shows the different types of SQL commands available in
SQL in the form of a chart.

1. Data Definition Language(DDL): It changes a table’s structure by adding, deleting
and altering its contents. Its changes are auto-committed(all changes are
automatically permanently saved in the database). Some commands that are a part
of DDL are:

CREATE: Used to create a new table in the database.
Example:

CREATE TABLE STUDENT(Name VARCHAR2(20), Email VARCHAR2(100), DOB DATE);

ALTER: Used to alter contents of a table by adding some new column or
attribute, or changing some existing attribute.

Page 11 © Copyright by Interviewbit

SQL Cheat Sheet

Example:

ALTER TABLE STUDENT ADD(ADDRESS VARCHAR2(20));
ALTER TABLE STUDENT MODIFY (ADDRESS VARCHAR2(20));

DROP: Used to delete the structure and record stored in the table.
Example:

DROP TABLE STUDENT;

TRUNCATE: Used to delete all the rows from the table, and free up the space in
the table.

Example:

TRUNCATE TABLE STUDENT;

2. Data Manipulation Language(DML): It is used for modifying a database, and is
responsible for any form of change in a database. These commands are not auto-
committed, i.e all changes are not automatically saved in the database. Some
commands that are a part of DML are:

INSERT: Used to insert data in the row of a table.
Example:

INSERT INTO STUDENT (Name, Subject) VALUES ("Scaler", "DSA");

In the above example, we insert the values “Scaler” and “DSA” in the columns Name
and Subject in the STUDENT table.

UPDATE: Used to update value of a table’s column.
Example:

Page 12 © Copyright by Interviewbit

SQL Cheat Sheet

UPDATE STUDENT
SET User_Name = 'Interviewbit'
WHERE Student_Id = '2'

In the above example, we update the name of the student, whose Student_ID is 2, to
the User_Name = “Interviewbit”.

DELETE: Used to delete one or more rows in a table.
Example:

DELETE FROM STUDENT
WHERE Name = "Scaler";

In the above example, the query deletes the row where the Name of the student is
“Scaler” from the STUDENT table.

3. Data Control Language(DCL): These commands are used to grant and take back
access/authority (revoke) from any database user. Some commands that are a part of
DCL are:

Grant: Used to grant a user access privileges to a database.
Example:

GRANT SELECT, UPDATE ON TABLE_1 TO USER_1, USER_2;

In the above example, we grant the rights to SELECT and UPDATE data from the table
TABLE_1 to users - USER_1 and USER_2.

Revoke: Used to revoke the permissions from an user.
Example:

REVOKE SELECT, UPDATE ON TABLE_1 FROM USER_1, USER_2;

In the above example we revoke the rights to SELECT and UPDATE data from the
table TABLE_1 from the users- USER_1 and USER_2.

Page 13 © Copyright by Interviewbit

SQL Cheat Sheet

4. Transaction Control Language: These commands can be used only with DML
commands in conjunction and belong to the category of auto-committed
commands. Some commands that are a part of TCL are:

COMMIT: Saves all the transactions made on a database.
Example:

DELETE FROM STUDENTS
WHERE AGE = 16;
COMMIT;

In the above database, we delete the row where AGE of the students is 16, and then
save this change to the database using COMMIT.

ROLLBACK: It is used to undo transactions which are not yet been saved.
Example:

DELETE FROM STUDENTS
WHERE AGE = 16;
ROLLBACK;

By using ROLLBACK in the above example, we can undo the deletion we performed in
the previous line of code, because the changes are not committed yet.

SAVEPOINT: Used to roll transaction back to a certain point without having to
roll back the entirity of the transaction.

Example:

SAVEPOINT SAVED;
DELETE FROM STUDENTS
WHERE AGE = 16;
ROLLBACK TO SAVED;

In the above example, we have created a savepoint just before performing the delete
operation in the table, and then we can return to that savepoint using the ROLLBACK
TO command.

Page 14 © Copyright by Interviewbit

SQL Cheat Sheet

5. Data Query Language: It is used to fetch some data from a database. The
command belonging to this category is:

SELECT: It is used to retrieve selected data based on some conditions which are
described using the WHERE clause. It is to be noted that the WHERE clause is
also optional to be used here and can be used depending on the user’s needs.

Example: With WHERE clause,

SELECT Name
FROM Student
WHERE age >= 18;

Example: Without WHERE clause,

SELECT Name
FROM Student

In the first example, we will only select those names in the Student table, whose
corresponding age is greater than 17. In the 2nd example, we will select all the names
from the Student table.

5. SQL Constraints

Constraints are rules which are applied on a table. For example, specifying valid limits
or ranges on data in the table etc.

The valid constraints in SQL are:

1. NOT NULL: Specifies that this column cannot store a NULL value.

Example:

CREATE TABLE Student
(
 ID int(8) NOT NULL,
 NAME varchar(30) NOT NULL,
 ADDRESS varchar(50)
);

Page 15 © Copyright by Interviewbit

SQL Cheat Sheet

In the above example, we create a table STUDENT, which has some attributes it has
to store. Among these attributes we declare that the columns ID and NAME cannot
have NULL values in their fields using NOT NULL constraint.

2. UNIQUE: Specifies that this column can have only Unique values, i.e the values
cannot be repeated in the column.

Example:

CREATE TABLE Student
(
 ID int(8) UNIQUE,
 NAME varchar(10) NOT NULL,
 ADDRESS varchar(20)
);

In the above example, we create a table Student and declare the ID column to be
unique using the UNIQUE constraint.

3. Primary Key: It is a field using which it is possible to uniquely identify each row in
a table. We will get to know about this in detail in the upcoming section.

4. Foreign Key: It is a field using which it is possible to uniquely identify each row in
some other table. We will get to know about this in detail in the upcoming section.

5. CHECK: It validates if all values in a column satisfy some particular condition or
not.

Example:

CREATE TABLE Student
(
 ID int(6) NOT NULL,
 NAME varchar(10),
 AGE int CHECK (AGE < 20)
);

Here, in the above query, we add the CHECK constraint into the table. By adding the
constraint, we can only insert entries that satisfy the condition AGE < 20 into the
table.

Page 16 © Copyright by Interviewbit

SQL Cheat Sheet

6. DEFAULT: It specifies a default value for a column when no value is specified for
that field.

Example:

CREATE TABLE Student
(
 ID int(8) NOT NULL,
 NAME varchar(50) NOT NULL,
 CLASS int DEFAULT 2
);

In the above query, we set a default value of 2 for the CLASS attribute. While inserting
records into the table, if the column has no value specified, then 2 is assigned to that
column as the default value.

6. Crud Operations in SQL

CRUD is an abbreviation for Create, Read, Update and Delete. These 4 operations
comprise the most basic database operations. The relevant commands for these 4
operations in SQL are:

Create: INSERT
Read: SELECT
Update: UPDATE
Delete: DELETE

Page 17 © Copyright by Interviewbit

SQL Cheat Sheet

The above image shows the pillars of SQL CRUD operations.

INSERT: To insert any new data (create operation - C) into a database, we use
the INSERT INTO statement.

SQL Syntax:

INSERT INTO name_of_table(column1, column2,)
 VALUES(value1, value2,)

Example:

INSERT INTO student(ID, name, phone, class)
 VALUES(1, 'Scaler', '+1234-4527', 12)

For multiple rows,

SQL Syntax:

Page 18 © Copyright by Interviewbit

SQL Cheat Sheet

INSERT INTO name_of_table(column1, column2,)
 VALUES(value1, value2,),
 (new_value1, new_value2, ...),
 (....), ... ;

Example:

INSERT INTO student(ID, name, phone, class)
 VALUES(1, 'Scaler', '+1234-4527', 12),
 (2, 'Interviewbit', '+4321-7654', 11);

The above example will insert into the student table having the values 1, Scaler,
+1234-5678 and 12 to the columns ID, name, phone and class columns.

SELECT: We use the select statement to perform the Read (R) operation of
CRUD.

SQL Syntax:

SELECT column1,column2,.. FROM name_of_table;

Example:

SELECT name,class FROM student;

The above example allows the user to read the data in the name and class columns
from the student table.

UPDATE: Update is the ‘U’ component of CRUD. The Update command is used to
update the contents of specific columns of specific rows.

SQL Syntax:

UPDATE name_of_table
SET column1=value1,column2=value2,...
WHERE conditions...;

Page 19 © Copyright by Interviewbit

SQL Cheat Sheet

Example:

UPDATE customers
SET phone = '+1234-9876'
WHEREID = 2;

The above SQL example code will update the table ‘customers’ whose ID is 2 with the
new given phone number.

DELETE:
The Delete command is used to delete or remove some rows from a table. It is the ‘D’
component of CRUD.

SQL Syntax:

DELETE FROM name_of_table
WHERE condition1, condition2, ...;

Example:

DELETE FROM student
WHERE class = 11;

The above SQL example code will delete the row from table student, where the class
= 11 conditions becomes true.

7. Important SQL Keywords

Page 20 © Copyright by Interviewbit

SQL Cheat Sheet

The below table lists some important keywords used in SQL, along with their
description and example.

Page 21 © Copyright by Interviewbit

SQL Cheat Sheet

Keyword Description Example

ADD Will add a new
column to an
existing table.

ALTER TABLE student
ADD email_address
VARCHAR(255)

ALTER
TABLE

Adds edits or
deletes
columns in a
table

ALTER TABLE student
DROP COLUMN
email_address;

ALTER
COLUMN

Can change
the datatype
of a table’s
column

ALTER TABLE student
ALTER COLUMN phone
VARCHAR(15)

AS Renames a
table/column
with an alias
existing only
for the query
duration.

SELECT name AS
student_name, phone
FROM student;

ASC Used in
conjunction
with ORDER
BY to sort
data in
ascending
order.

SELECT column1,
column2, … FROM
table_name ORDER BY
column1, column2, …
ASC;

DESC Used in
conjunction
with ORDER
BY to sort
data in
descending

SELECT column1,
column2, … FROM
table_name ORDER BY
column1, column2, …
DESC;

Page 22 © Copyright by Interviewbit

SQL Cheat Sheet

8. Clauses in SQL

Clauses are in-built functions available in SQL and are used for filtering and analysing
data quickly allowing the user to efficiently extract the required information from the
database.

The below table lists some of the important SQL clauses and their description with
examples:

Page 23 © Copyright by Interviewbit

SQL Cheat Sheet

Name Description Example

WHERE Used to select data
from the database
based on some
conditions.

SELECT * from
Employee WHERE
age >= 18;

AND Used to combine 2 or
more conditions and
returns true if all the
conditions are True.

SELECT * from
Employee WHERE
age >= 18 AND
salary >= 45000 ;

OR Similar to AND but
returns true if any of
the conditions are
True.

Select * from
Employee where
salary >= 45000 OR
age >= 18

LIKE Used to search for a
specified pattern in a
column.

SELECT * FROM
Students WHERE
Name LIKE ‘a%’;

LIMIT Puts a restriction on
how many rows are
returned from a query.

SELECT * FROM
table1 LIMIT 3;

ORDER
BY

Used to sort given
data in Ascending or
Descending order.

SELECT * FROM
student ORDER BY
age ASC

GROUP
BY Groups rows that have

the same values into
summary rows.

SELECT
COUNT(StudentID),
State FROM
Students GROUP
BY State;

Page 24 © Copyright by Interviewbit

SQL Cheat Sheet

9. SQL Operators

Operators are used in SQL to form complex expressions which can be evaluated to
code more intricate queries and extract more precise data from a database.

There are 3 main types of operators: Arithmetic, Comparision and Logical operators,
each of which will be described below.

Arithmetic Operators:
Arithmetic Operators allows the user to perform arithmetic operations in SQL. The
table below shows the list of arithmetic operators available in SQL:

Page 25 © Copyright by Interviewbit

SQL Cheat Sheet

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulo

Bitwise Operators:
Bitwise operators are used to performing Bit manipulation operations in SQL. The
table below shows the list of bitwise operators available in SQL:

Operator Description

& Bitwise AND

| Bitwise OR

^ Bitwise XOR

Relational Operators:
Relational operators are used to performing relational expressions in SQL, i.e those
expressions whose value either result in true or false. The table below shows the list
of relational operators available in SQL:

Page 26 © Copyright by Interviewbit

SQL Cheat Sheet

Operator Description

= Equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

<> Not equal to

Compound Operators:
Compound operators are basically a combination of 2 or more arithmetic or
relational operator, which can be used as a shorthand while writing code. The table
below shows the list of compound operators available in SQL:

Page 27 © Copyright by Interviewbit

SQL Cheat Sheet

Operator Description

+= Add equals

-= Subtract equals

*= Multiply equals

/= Divide equals

%= Modulo equals

&= AND equals

|= OR equals

^= XOR equals

Logical Operators:
Logical operators are used to combining 2 or more relational statements into 1
compound statement whose truth value is evaluated as a whole. The table below
shows the SQL logical operators with their description:

Page 28 © Copyright by Interviewbit

SQL Cheat Sheet

Operator Description

ALL Returns True if all subqueries meet the given
condition.

AND Returns True if all the conditions turn out to be
true

ANY True if any of the subqueries meet the given
condition

BETWEEN True if the operand lies within the range of the
conditions

EXISTS True if the subquery returns one or more
records

IN Returns True if the operands to at least one of
the operands in a given list of expressions

LIKE Return True if the operand and some given
pattern match.

NOT Displays some record if the set of given
conditions is False

OR Returns True if any of the conditions turn out to
be True

SOME Returns True if any of the Subqueries meet the
given condition.

Page 29 © Copyright by Interviewbit

SQL Cheat Sheet

10. Keys in SQL

A database consists of multiple tables and these tables and their contents are related
to each other by some relations/conditions. To identify each row of these tables
uniquely, we make use of SQL keys. A SQL key can be a single column or a group of
columns used to uniquely identify the rows of a table. SQL keys are a means to
ensure that no row will have duplicate values. They are also a means to establish
relations between multiple tables in a database.

Types of Keys:

1. Primary Key: They uniquely identify a row in a table.

Properties:

Only a single primary key for a table. (A special case is a composite key, which
can be formed by the composition of 2 or more columns, and act as a single
candidate key.)
The primary key column cannot have any NULL values.
The primary key must be unique for each row.

Example:

CREATE TABLE Student (
 ID int NOT NULL,
 LastName varchar(255) NOT NULL,
 FirstName varchar(255),
 Class int,
 PRIMARY KEY (ID)
);

The above example creates a table called STUDENT with some given
properties(columns) and assigns the ID column as the primary key of the table. Using
the value of ID column, we can uniquely identify its corresponding row.

2. Foreign Key: Foreign keys are keys that reference the primary keys of some other
table. They establish a relationship between 2 tables and link them up.

Page 30 © Copyright by Interviewbit

SQL Cheat Sheet

Example: In the below example, a table called Orders is created with some given
attributes and its Primary Key is declared to be OrderID and Foreign Key is declared
to be PersonId referenced from the Person's table. A person's table is assumed to be
created beforehand.

CREATE TABLE Orders (
 OrderID int NOT NULL,
 OrderNumber int NOT NULL,
 PersonID int,
 PRIMARY KEY (OrderID),
 FOREIGN KEY (PersonID) REFERENCES Persons(PersonID)
);

Super Key: It is a group of single or multiple keys which identifies row of a table.
Candidate Key: It is a collection of unique attributes that can uniquely identify
tuples in a table.
Alternate Key: It is a column or group of columns that can identify every row in
a table uniquely.
Compound Key: It is a collection of more than one record that can be used to
uniquely identify a specific record.
Composite Key: Collection of more than one column that can uniquely identify
rows in a table.
Surrogate Key: It is an artificial key that aims to uniquely identify each record.

Amongst these, the Primary and Foreign keys are most commonly used.

11. Functions in SQL

The SQL Server has many builtin functions some of which are listed below:

SQL Server String Functions:
The table below lists some of the String functions in SQL with their description:

Page 31 © Copyright by Interviewbit

SQL Cheat Sheet

Name Description

ASCII Returns ASCII values for a specific character.

CHAR Returns character based on the ASCII code.

CONCAT Concatenates 2 strings together.

SOUNDEX Returns similarity of 2 strings in terms of a 4
character code.

DIFFERENCE Compares 2 SOUNDEX values and returns the
result as an integer.

SUBSTRING Extracts a substring from a given string.

TRIM Removes leading and trailing whitespaces
from a string.

UPPER Converts a string to upper-case.

SQL Server Numeric Functions:
The table below lists some of the Numeric functions in SQL with their description:

Page 32 © Copyright by Interviewbit

SQL Cheat Sheet

Name Description

ABS Returns the absolute value of a number.

ASIN Returns arc sine value of a number.

AVG Returns average value of an expression.

COUNT Counts the number of records returned by a
SELECT query.

EXP Returns e raised to the power of a number.

FLOOR Returns the greatest integer <= the number.

RAND Returns a random number.

SIGN Returns the sign of a number.

SQRT Returns the square root of a number.

SUM Returns the sum of a set of values.

SQL Server Date Functions:
The table below lists some of the Date functions in SQL with their description:

Page 33 © Copyright by Interviewbit

SQL Cheat Sheet

Name Description

CURRENT_TIMESTAMP Returns current date and time.

DATEADD Adds a date/time interval to date
and returns the new date.

DATENAME Returns a specified part of a
date(as a string).

DATEPART Returns a specified part of a
date(as an integer).

DAY Returns the day of the month for a
specified date.

GETDATE Returns the current date and time
from the database.

SQL Server Advanced Functions:
The table below lists some of the Advanced functions in SQL with their description:

Page 34 © Copyright by Interviewbit

SQL Cheat Sheet

Name Description

CAST Typecasts a value into specified datatype.

CONVERT Converts a value into a specified datatype.

IIF Return a value if a condition evaluates to
True, else some other value.

ISNULL Return a specified value if the expression is
NULL, else returns the expression.

ISNUMERIC Checks if an expression is numeric or not.

SYSTEM_USER Returns the login name for the current user

USER_NAME Returns the database user name based on
the specified id.

12. Joins in SQL

Joins are a SQL concept that allows us to fetch data a�er combining multiple tables
of a database.

The following are the types of joins in SQL:

INNER JOIN: Returns any records which have matching values in both tables.

Page 35 © Copyright by Interviewbit

SQL Cheat Sheet

Example:

Consider the following tables,

Let us try to build the below table, using Joins,

Page 36 © Copyright by Interviewbit

SQL Cheat Sheet

The SQL code will be as follows,

SELECT orders.order_id, products.product_name,customers.customer_name,products.price
FROM orders
INNER JOIN products ON products.product_id = order.product_id
INNER JOIN customers on customers.customer_id = order.customer_id;

NATURAL JOIN: It is a special type of inner join based on the fact that the
column names and datatypes are the same on both tables.

Syntax:

Select * from table1 Natural JOIN table2;

Example:

Select * from Customers Natural JOIN Orders;

In the above example, we are merging the Customers and Orders table shown above
using a NATURAL JOIN based on the common column customer_id.

RIGHT JOIN: Returns all of the records from the second table, along with any
matching records from the first.

Page 37 © Copyright by Interviewbit

SQL Cheat Sheet

Example:

Let us define an Orders table first,

Let us also define an Employee table,

Page 38 © Copyright by Interviewbit

SQL Cheat Sheet

Applying right join on these tables,

SELECT Orders.OrderID, Employees.LastName, Employees.FirstName
FROM Orders
RIGHT JOIN Employees
ON Orders.EmployeeID = Employees.EmployeeID
ORDER BY Orders.OrderID;

The resultant table will be,

LEFT JOIN: Returns all of the records from the first table, along with any
matching records from the second table.

Page 39 © Copyright by Interviewbit

SQL Cheat Sheet

Example:

Consider the below Customer and Orders table,

Page 40 © Copyright by Interviewbit

SQL Cheat Sheet

We will apply Le� Join on the above tables, as follows,

SELECT Customers.CustomerName, Orders.OrderID
FROM Customers
LEFT JOIN Orders
ON Customers.CustomerID=Orders.CustomerID
ORDER BY Customers.CustomerName;

The top few entries of the resultant table will appear as shown in the below image.

FULL JOIN: Returns all records from both tables when there is a match.

Example:

Page 41 © Copyright by Interviewbit

SQL Cheat Sheet

Consider the below tables, Customers and Orders,

Table Customers:

Table Orders:

Applying Outer Join on the above 2 tables, using the code:

Page 42 © Copyright by Interviewbit

SQL Cheat Sheet

SELECT ID, NAME, AMOUNT, DATE
 FROM CUSTOMERS
 FULL JOIN ORDERS
 ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID;

We will get the following table as the result of the outer join.

13. Triggers in SQL

SQL codes automatically executed in response to a certain event occurring in a table
of a database are called triggers. There cannot be more than 1 trigger with a similar
action time and event for one table.

Syntax:

Create Trigger Trigger_Name
(Before | After) [Insert | Update | Delete]
on [Table_Name]
[for each row | for each column]
[trigger_body]

Example:

Page 43 © Copyright by Interviewbit

SQL Cheat Sheet

CREATE TRIGGER trigger1
before INSERT
ON Student
FOR EACH ROW
SET new.total = (new.marks/ 10) * 100;

Here, we create a new Trigger called trigger1, just before we perform an INSERT
operation on the Student table, we calculate the percentage of the marks for each
row.
Some common operations that can be performed on triggers are:

DROP: This operation will drop an already existing trigger from the table.
Syntax:

DROP TRIGGER trigger name;

SHOW: This will display all the triggers that are currently present in the table.
Syntax:

SHOW TRIGGERS IN database_name;

14. SQL Stored Procedures

SQL procedures are stored in SQL codes, which can be saved for reuse again and
again.

Syntax:

CREATE PROCEDURE procedure_name AS sql_statement
GO;

To execute a stored procedure,

EXEC procedure_name;

Page 44 © Copyright by Interviewbit

SQL Cheat Sheet

Example:

CREATE PROCEDURE SelectAllCustomers AS SELECT * FROM Customers;
GO;

The above example creates a stored procedure called ‘SelectAllCustomers’, which
selects all the records from the customer table.

15. SQL Injection

Insertion or ‘Injection’ of some SQL Query from the input data of the client to the
application is called SQL Injection. They can perform CRUD operations on the
database and can read to vulnerabilities and loss of data.

It can occur in 2 ways:

Data is used to dynamically construct an SQL Query.
Unintended data from an untrusted source enters the application.

The consequences of SQL Injections can be Confidentiality issues, Authentication
breaches, Authorization vulnerabilities, and breaking the Integrity of the system.

Page 45 © Copyright by Interviewbit

SQL Cheat Sheet

The above image shows an example of SQL injections, through the use of 2 tables -
students and library.

Here the hacker is injecting SQL code -

UNION SELECT studentName, rollNo FROM students

into the Database server, where his query is used to JOIN the tables - students and
library. Joining the 2 tables, the result of the query is returned from the database,
using which the hacker gains access to the information he needs thereby taking
advantage of the system vulnerability. The arrows in the diagram show the flow of
how the SQL Injection causes the vulnerability in the database system, starting from
the hacker’s computer.

Conclusion:

Databases are growing increasingly important in our modern industry where data is
considered to be a new wealth. Managing these large amounts of data, gaining
insights from them and storing them in a cost-effective manner makes database
management highly important in any modern so�ware being made. To manage any
form of databases/RDBMS, we need to learn SQL which allows us to easily code and
manage data from these databases and create large scalable applications of the
future, which caters to the needs of millions.

Page 46 © Copyright by Interviewbit

